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The discrete coagulation equations with collisional breakage describe the
dynamics of cluster growth when clusters undergo binary collisions resulting
either in coalescence or breakup with possible transfer of matter. Each of these
two events may happen with an a priori prescribed probability depending for
instance on the sizes of the colliding clusters. We study the existence, density
conservation and uniqueness of solutions. We also consider the large time
behaviour and discuss the possibility of the occurrence of gelation in some par-
ticular cases.
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1. INTRODUCTION

Coagulation-fragmentation processes naturally occur in the dynamics of
cluster growth and describe the way a system of clusters can merge to form
larger ones or fragment to form smaller ones. Models of cluster growth
arise in a wide variety of situations, including aerosol science, astrophysics,
colloidal chemistry, polymer science, and biology. In the model considered
in this paper the clusters are assumed to be discrete, that is, they consist of
a finite number of identical elementary particles. The basic reactions
between clusters taken into account are the coalescence of two clusters to
form a larger one and the breakage of clusters into smaller pieces. At least
two physical mechanisms have been considered to describe the latter



process. The most commonly used, known as spontaneous or linear frag-
mentation, assumes that the breakup process is only ruled by the properties
of the particles (and also by external forces, if any). The rate of fragmenta-
tion of clusters made of i particles, or i-clusters, is then taken to be pro-
portional to the number of i-clusters per unit volume (hence the term linear
used for this kind of fragmentation). The collisional or nonlinear fragmen-
tation process is based on a different assumption, namely that the breakage
of a cluster only occurs after collision with another cluster, the rate of this
reaction being taken to be proportional to the numbers per unit volume of
the two colliding clusters. Let us point out here one main difference
between these two fragmentation processes. The spontaneous breakage of a
cluster only produces smaller clusters while collisional breakage allows for
some transfer of matter between the two colliding clusters and might thus
produce clusters which are larger than the two colliding ones. For example,
the collisional breakage of an i-cluster and a j-cluster might result in a
1-cluster and an (i+j−1)-cluster.

Denoting by ci(t), i \ 1, the number of i-clusters per unit volume at
time t \ 0, the discrete coagulation equations with spontaneous fragmenta-
tion read

dci
dt
=
1
2

C
i−1

j=1
(aj, i− jcjci− j−bj, i− jci)− C

.

j=1
(ai, jcicj−bi, jci+j), (1.1)

for i \ 1, under the additional assumption that only binary fragmentation
is allowed for (for i=1 the first sum of the right-hand side of (1.1) is
obviously taken to be zero). Here (ai, j) and (bi, j) denote the coagulation
and fragmentation coefficients, respectively, and satisfy

ai, j=aj, i \ 0 and bi, j=bj, i \ 0, i, j \ 1.

In the right-hand side of (1.1) the first term accounts for the formation of
i-clusters by binary coalescence of smaller ones and the second one for the
fragmentation of i-clusters into two smaller ones. The third term describes
the depletion of i-clusters by coagulation with other clusters while the
fourth term represents the creation of i-clusters resulting from the breakage
of larger ones. The system (1.1) without fragmentation (bi, j — 0) was origi-
nally introduced by Smoluchowski (21, 22) and we refer to Drake (11) for a
derivation of (1.1) and some physical background. In the past years several
mathematical studies have been devoted to (1.1) and we refer among others
to refs. 23, 3, 2, 6, and 15 for existence and uniqueness results. The large
time behaviour of solutions to (1.1) has also been investigated for some
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particular choices of the coefficients in, e.g., refs. 3–5 (see also the survey
paper by da Costa (7)).

The modeling of collisional breakage requires a different formulation.
More precisely, the discrete coagulation equations with collisional frag-
mentation read (20, 26)

dci
dt
=
1
2

C
i−1

j=1
wj, i− jaj, i− jcjci− j− C

.

j=1
ai, jcicj (1.2)

+
1
2

C
.

j=i+1
C
j−1

k=1
N i

j−k, k(1−wj−k, k) aj−k, kcj−kck,

ci(0)=c0i , (1.3)

for i \ 1. Here ai, j denotes the rate of collisions of i-clusters with j-clusters
and wi, j is the probability that the two colliding clusters merge into a single
one. If they do not (an event which occurs with probability 1−wi, j) they
undergo fragmentation with possible transfer of matter. Then {N s

i, j ,
s=1,..., i+j−1} is the distribution function of the resulting fragments.
The coefficients (ai, j), (wi, j) and (N

s
i, j) enjoy the following properties:

ai, j=aj, i \ 0 and 0 [ wi, j=wj, i [ 1, i, j \ 1, (1.4)

and as mass is required to be conserved during each collision,

N s
i, j=N s

j, i \ 0 and C
i+j−1

s=1
sN s

i, j=i+j, i, j \ 1. (1.5)

In the right-hand side of (1.2) the first term accounts for the formation of
i-clusters by collision and coagulation of smaller ones (with effective rate
wi, jai, j) and the second one for the loss of i-clusters due to collisions with
other clusters. The third term describes the creation of i-clusters after the
collision and breakup of larger clusters.

In contrast to (1.1) the system (1.2) does not seem to have been inves-
tigated mathematically and the purpose of this paper is to discuss some
mathematical issues for (1.2). Let us first point out that, in the absence of
fragmentation (wi, j — 1), the system (1.2) is nothing but the classical
coagulation equation (21) which has been extensively studied by physicists
and mathematicians (see, e.g., the survey paper by Aldous (1)). Observe next
that, since particles are neither created nor destroyed in the reactions
described by (1.1) or (1.2), the density

+(t)= C
.

i=1
ici(t) (1.6)
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is expected to be conserved throughout time evolution. It is however well-
known by now that, in the absence of fragmentation (i.e., bi, j — 0 for (1.1)
or wi, j — 1 for (1.2)), there are physically relevant coefficients (ai, j) for
which density conservation breaks down in finite time, a phenomenon
known as gelation (see, e.g., refs. 25, 12 and the references therein). It is
also known that for (1.1) strong fragmentation prevents the gelation phe-
nomenon to occur. (6) The gelation phenomenon might also take place for
(1.2) as we shall see in Section 4.

Some particular cases of (1.2) have been considered by physicists and
we mention some of them now. Besides the classical coagulation equation
which is obtained from (1.2) by setting wi, j — 1, we can also consider the
case where the collision of an i-cluster and a j-cluster results in either the
coalescence of both in an (i+j)-cluster or in an elastic collision leaving
the incoming clusters unchanged. In that case we have N i

i, j=N j
i, j=1 and

N s
i, j=0 if s ¨ {i, j}. The system (1.2) then reduces to the classical coagula-

tion equation with coagulation coefficients (wi, jai, j), i.e.,

dci
dt
=

1
2

C
i−1

j=1
wj, i− jaj, i− jcjci− j− C

.

j=1
wi, jai, jcicj, i \ 1.

As for models involving only collisional fragmentation (wi, j — 0) we
mention the nonlinear breakage model studied by Cheng and Redner. (8) In
this model, when two clusters collide, they both fragment into smaller
pieces and there is thus no transfer of matter between the colliding clusters.
Actually the model studied in ref. 8 belongs to the class of continuous
models, in which clusters are described by means of a continuous variable
(volume or size). For clusters described by a discrete variable it reads

dci
dt
= C

.

j=1
C
.

k=i+1
Kj, kbi, j; kcjck− C

.

j=1
Ki, jcicj, i \ 1, (1.7)

with Ki, j=Kj, k \ 0, and {bi, j; k, 1 [ i [ j−1} denotes the distribution
function of the fragments of a j-cluster after a collision with a k-cluster,
and satisfies

C
j−1

i=1
ibi, j; k=j, j \ 2, k \ 1.

To obtain (1.7) from (1.2) we put ai, j=Ki, j and

N s
i, j=1[s,+.)(i) bs, i; j+1[s,+.)( j) bs, j; i
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for i, j \ 1 and s ¥ {1,..., i+j−1}, where 1[s,+.) denotes the characteristic
function of the interval [s,+.). As each cluster splits into smaller pieces
after collision it is expected that, in the long time, only 1-clusters remain
and this is shown in Section 4. Large time asymptotics for the continuous
analogue of (1.7) may be found in refs. 8, 9, and 14. Finally a particular
case of (1.2) was used by Srivastava (24) to analyse the evolution of rain-
drops size spectra and reads

dci
dt
=

1
2

C
i−1

j=1
Kj, i− jcjci− j− C

.

j=1
(Ki, j+bi, j) cicj, i \ 2,

dc1
dt
=− C

.

j=1
(K1, j+b1, j) c1cj+

1
2

C
.

j=1
C
.

k=1
( j+k) bj, kcjck,

where Ki, j=Kj, i \ 0 and bi, j=bj, i \ 0. Introducing

ai, j=Ki, j+bi, j, wi, j=
Ki, j

ai, j
, N s

i, j=(i+j) ds, 1

allows to check that the previous system is a particular case of (1.2).
Assuming that both Ki, j and bi, j are constants an explicit solution is
obtained which converges to a steady state as time goes to infinity. (24)

We now describe the results we obtain in this paper: we mainly discuss
the existence and uniqueness of solutions to (1.2), though the final section
is devoted to the study of the large time behaviour for some particular
cases. In the next section we prove the existence of solutions to (1.2) under
rather general assumptions on the coefficients (ai, j), (wi, j) and (N s

i, j). As
our assumptions include the classical coagulation equations with coagula-
tion coefficients (ai, j) for which gelation is known to occur, we only prove
that the density of the solutions is non-increasing with respect to time. In
Section 3 we consider the existence of density-conserving solutions to (1.2)
and prove the existence of such a solution when ai, j [ A(i+j). A similar
result has been proved for (1.1) in ref. 2 but our proof relies on a comple-
tely different argument which is adapted from ref. 16. It involves the study
of the propagation of generalised moments of approximating solutions to
(1.2) without additional assumptions on the initial data. Still assuming the
collision coefficients (ai, j) to be at most linear we investigate the propaga-
tion of moments for the density-conserving solutions we construct, and
their uniqueness as well. Finally the large time behaviour of solutions to
(1.2) seems to be a challenging question. Still, in a few particular cases, we
are able to prove the stabilization to steady states and these results are
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described in the last section. We also point out the possible occurrence of
gelation in the model (1.2).

From now on we assume that the coefficients (ai, j), (wi, j) and (N
s
i, j)

are given and satisfy (1.4)–(1.5).

2. EXISTENCE OF SOLUTIONS

We first introduce some notations and specify what we mean by a
solution to (1.2)–(1.3). Obviously the density defined by (1.6) is a relevant
quantity for the analysis of (1.2)–(1.3) and a natural functional setting is
given by the Banach space X defined by

X=3x=(xi)i \ 1 ¥ RN0{0}, C
.

i=1
i |xi | <.4,

with the norm

||x||X= C
.

i=1
i |xi |.

We shall actually use the positive cone X+ of X, that is,

X+={x ¥X, xi \ 0 for each i \ 1}.

Next, if x=(xi)i \ 1 is a sequence of real numbers and i, j are positive
integers we put

D s
i, j(x)=N s

i, j(1−wi, j) ai, jxixj, 1 [ s [ i+j−1. (2.1)

Definition 1. Let T ¥ (0,+.] and c0=(c0i)i \ 1 be a sequence of non-
negative real numbers. A solution c=(ci)i \ 1 to (1.2)–(1.3) on [0, T) is a
sequence of non-negative continuous functions satisfying for each i \ 1 and
t ¥ (0, T)

(i) ci ¥ C([0, T)), ;.

j=1 ai, jcj ¥ L
1(0, t), ;.

j=i+1 ; j−1
k=1 D

i
j−k, k(c) ¥ L

1(0, t),
(ii) and there holds

ci(t)=c0i+F
t

0

1 1
2

C
i−1

j=1
wj, i− jaj, i− jcj(y) ci− j(y)− C

.

j=1
ai, jci(y) cj(y)2 dy

+
1
2
F
t

0
C
.

j=i+1
C
j−1

k=1
D i

j−k, k(c(y)) dy.
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We now fix a sequence c0=(c0i)i \ 1 of non-negative real numbers as
the initial condition. As in previous works on similar equations existence of
solutions to (1.2)–(1.3) follows by taking a limit of solutions to finite-
dimensional systems of ordinary differential equations obtained by trunca-
tion of (1.2). More precisely, given N \ 3, we consider the following system
of N ordinary differential equations

dcNi
dt
=
1
2

C
i−1

j=1
wj, i− jaj, i− jc

N
j c

N
i−j− C

N−i

j=1
ai, jc

N
i c

N
j

+
1
2

C
N

j=i+1
C
j−1

k=1
N i

j−k, k(1−wj−k, k) aj−k, kc
N
j−kc

N
k , (2.2)

cNi (0)=c0i , (2.3)

for i ¥ {1,..., N}. Proceeding as in ref. 2, Lemmas 2.1 and 2.2 we obtain the
following result.

Lemma 2.2. For each N \ 3 the system (2.2)–(2.3) has a unique
solution

cN=(cNi )1 [ i [N ¥ C1([0,+.); RN)

with cNi (t) \ 0 for 1 [ i [N and t \ 0. Furthermore, if (gi) ¥ RN, there
holds

C
N

i=1
gi
dcNi
dt
=
1
2

C
N−1

i=1
C
N−i

j=1
(gi+j−gi−gj) ai, jc

N
i c

N
j

−
1
2

C
N−1

i=1
C
N−i

j=1
(1−wi, j) 1gi+j− C

i+j−1

s=1
N s

i, jgs 2 ai, jcNi cNj . (2.4)

It easily follows from (1.5) and (2.4) with gi=i, 1 [ i [N, that

C
N

i=1
icNi (t)= C

N

i=1
ic0i , t ¥ [0,+.). (2.5)

We now state the main result of this section.

Theorem 2.3. Assume that c0 ¥X+ and the assumptions (1.4)–(1.5)
are fulfilled. Assume further that

lim
iQ+.

max
1 [ j [ i−1

1 ai− j, j
j(i− j)
2=0, (2.6)
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and there is a constant C1 such that

N s
i, j [ C1, 1 [ s [ i+j−1, i, j \ 1. (2.7)

Then there is at least one solution c to (1.2)–(1.3) on [0,+.) which satis-
fies c(t) ¥X+ for each t ¥ [0,+.) and

C
.

i=1
ici(t) [ C

.

i=1
ic0i . (2.8)

Remark 2.4. It is easily seen that the collision coefficients ai, j=iaja,
i, j \ 1, fulfil (2.6) when a ¥ [0, 1).

Proof. We first notice that (2.6) ensures that there is a positive con-
stant C0 such that

ai, j [ C0ij, i, j \ 1. (2.9)

It also follows from (2.6) that, for each i \ 1,

lim
jQ+.

ai, j
j
=0. (2.10)

Fix T ¥ (0,+.). In the following we denote by C any positive constant
depending only on C1, C0, ||c0||X and T. Consider now i \ 1 and N \ i. It
follows from Lemma 2.2, (1.4), (2.5), (2.7) and (2.9) that the i th component
cNi of the solution cN to (2.2)–(2.3) satisfies

: dcNi
dt
: [ C0

2
C
i−1

j=1
j(i− j) cNi−jc

N
j +C0 C

N−i

j=1
ijcNi c

N
j

+
C0C1

2
C
N

j=i+1
C
j−1

k=1
( j−k) kcNj−kc

N
k

[ C ||c0||2X

: dcNi
dt
: [ C. (2.11)

By (2.5) and (2.11) the sequence (cNi )N \ i is bounded in C1([0, T]) and is
thus relatively compact in C([0, T]). As this holds true for each i \ 1 we
use a diagonal process to conclude that there is a subsequence of (cN) (not
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relabeled) and a sequence c=(ci)i \ 1 of non-negative continuous functions
such that, for each i \ 1,

lim
NQ+.

|cNi −ci |C([0, T])=0. (2.12)

In addition we infer from (2.5) and (2.12) that, for each M \ 1 and
t ¥ [0, T], we have

C
M

i=1
ici(t) [ C

.

i=1
ic0i ,

hence

C
.

i=1
ici(t) [ C

.

i=1
ic0i , t ¥ [0, T]. (2.13)

We next fix i \ 1 and consider e ¥ (0, 1). By (2.10) there is M \ 1 such that
ai, j [ ej for j \M. For t ¥ [0, T] and N large enough it follows from (2.5)
and (2.13) that

: C
N−i

j=1
ai, jc

N
j (t)− C

.

j=1
ai, jcj(t) :

[ C0i C
M

j=1
j |cNj (t)−cj(t)|+e C

N−i

j=M+1
jcNj (t)+e C

.

j=M+1
jcj(t)

[ C0i C
M

j=1
j |cNj −cj |C([0, T])+2e ||c

0||X.

We then infer from (2.12) that

lim sup
NQ+.

: C
N−i

j=1
ai, jc

N
j − C

.

j=1
ai, jcj :

C([0, T])
[ 2e ||c0||X,

from which we conclude that

lim
NQ+.

: C
N−i

j=1
ai, jc

N
j − C

.

j=1
ai, jcj :

C([0, T])
=0.

Using again (2.12) we end up with

lim
NQ+.

: C
N−i

j=1
ai, jc

N
i c

N
j − C

.

j=1
ai, jcicj :

C([0, T])
=0. (2.14)
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We next proceed in a similar way to show that (2.6) entails

lim
NQ+.

: C
N

j=i+1
C
j−1

k=1
D i

j−k, k(c
N)− C

.

j=i+1
C
j−1

k=1
D i

j−k, k(c) :
C([0, T])

=0, (2.15)

where D i
j−k, k(.) is defined by (2.1). Indeed let e ¥ (0, 1). By (2.6) there is

M \ i+1 such that

max
1 [ k [ j−1

1 aj−k, k
k( j−k)
2 [ e, j \M. (2.16)

It follows from (1.4), (2.5), (2.7) and (2.16) that, for N >M,

sup
t ¥ [0, T]

C
N

j=M
C
j−1

k=1
D i

j−k, k(c
N(t)) [ C1e sup

t ¥ [0, T]
C
N

j=M
C
j−1

k=1
( j−k) kcNj−k(t) c

N
k (t)

[ Ce.

Similarly we infer from (1.4), (2.7), (2.13) and (2.16) that

sup
t ¥ [0, T]

C
.

j=M
C
j−1

k=1
D i

j−k, k((c(t)) [ Ce.

Combining the above two estimates and (2.12) yield the claim (2.15).
Thanks to (2.12), (2.14) and (2.15) it is now straightforward to pass to

the limit as NQ+. in the integral version of (2.2) and check that c is
indeed a solution to (1.2)–(1.3) on [0, T). Recalling (2.13) we see that c
satisfies (2.8). As T was arbitrary, the proof of Theorem 2.3 is complete. L

Remark 2.5. As already mentioned it is in general not possible to
improve (2.8) to an equality without additional assumptions on the data.
A sufficient condition on (ai, j) which guarantees the existence of a density-
conserving solution is given in the next section. We will however return
shortly to the gelation phenomenon in the final section.

3. DENSITY-CONSERVING SOLUTIONS

In this section we assume that the collision coefficients (ai, j) satisfy

ai, j [ A(i+j), i, j \ 1, (3.1)
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for some positive constant A. Under Assumption (3.1) it is proved in ref. 2,
Theorems 2.4 and 2.5 that there is at least one density-conserving solution
to (1.1) for every initial data in X+ and the purpose of this section is to
show that a similar result holds true for (1.2). The proof carried out in
ref. 2 involves rather delicate estimates to control the tail of the series in
(1.1) and an alternative proof based on estimates on generalised moments
has been proposed in ref. 16. We shall here develop further this method
and show that it applies to the study of (1.2).

3.1. Existence of Density-Conserving Solutions

The main result of this section is:

Theorem 3.1. Assume that c0 ¥X+. Under the assumptions
(1.4)–(1.5) and (3.1) there is at least one solution c to (1.2)–(1.3) on
[0,+.) satisfying

||c(t)||X=||c0||X, t ¥ [0,+.). (3.2)

In other words the density of the solution c is conserved throughout
time evolution.

Before proceeding with the proof of Theorem 3.1 we need some
preliminary results. We denote by K1 the set of non-negative and convex
functions U ¥ C1([0,+.)) 5W2,.

loc (0,+.) such that U(0)=0, UŒ(0) \ 0
and UŒ is a concave function. We next denote by K1,. the set of functions
U ¥K1 satisfying in addition

lim
rQ+.

UŒ(r)= lim
rQ+.

U(r)
r
=+.. (3.3)

Observe that rW rm belongs to K1 for m ¥ [1, 2] and to K1,. for
m ¥ (1, 2]. We first recall the following lemma.

Lemma 3.2 (ref. 16, Lemma 3.2). For U ¥K1 and i, j \ 1 there
holds

(i+j)(U(i+j)−U(i)−U( j)) [ 2(iU( j)+jU(i)). (3.4)

The next lemma is the main estimate needed to prove Theorem 3.1.

Lemma 3.3. Consider T ¥ (0,+.) and U ¥K1. There is a constant
cT depending only on A, U, ||c0||X and T such that, for each N \ 3, the
solution cN to (2.2)–(2.3) given by Lemma 2.2 satisfies
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C
N

i=1
U(i) cNi (t) [ cT C

N

i=1
U(i) c0i , t ¥ [0, T], (3.5)

0 [ F
T

0
C
N−1

i=1
C
N−i

j=1
C

i+j−1

s=1
s 1U(i+j)

i+j
−
U(s)
s
2 D s

i, j(c
N(y)) dy

[ cT C
N

i=1
U(i) c0i , (3.6)

where D s
i, j(.) is defined by (2.1).

Proof. For N \ 3 and t ¥ [0, T] we put

MN
U(t)= C

N

i=1
U(i) cNi (t).

We infer from (2.4) and (3.1) that

dMN
U

dt
[
A
2

C
N−1

i=1
C
N−i

j=1
(i+j)(U(i+j)−U(i)−U( j)) cNi c

N
j

−
1
2

C
N−1

i=1
C
N−i

j=1
(1−wi, j)(U(i+j)− C

i+j−1

s=1
N s

i, jU(s)) ai, jc
N
i c

N
j .

By (1.5) we have

U(i+j)− C
i+j−1

s=1
N s

i, jU(s)= C
i+j−1

s=1
sN s

i, j
1U(i+j)

i+j
−
U(s)
s
2.

The above two formulae, (2.5) and (3.4) now yield

dMN
U

dt
[ A C

N−1

i=1
C
N−i

j=1
(iU( j)+jU(i)) cNi c

N
j

−
1
2

C
N−1

i=1
C
N−i

j=1
C

i+j−1

s=1
s 1U(i+j)

i+j
−
U(s)
s
2 D s

i, j(c
N),

dMN
U

dt
[ 2A ||c0||X M

N
U

−
1
2

C
N−1

i=1
C
N−i

j=1
C

i+j−1

s=1
s 1U(i+j)

i+j
−
U(s)
s
2 D s

i, j(c
N).

(3.7)
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Now, since U(0)=0 and U is a convex function, the function rW U(r)/r is
a non-decreasing function and the second term of the right-hand side of
(3.7) is non-negative. Therefore

dMN
U

dt
[ 2A ||c0||X M

N
U,

which yields (3.5) by the Gronwall lemma. We next integrate (3.7) over
(0, T) and use (3.5) to obtain (3.6). L

We next derive a further estimate which entails the componentwise
relative compactness of (cN).

Lemma 3.4. Let T ¥ (0,+.) and i \ 1. There is a constant ci(T)
depending only on A, ||c0||X, i and T such that, for each N \max(i, 3),

: dcNi
dt
:
L1(0, T)

[ ci(T). (3.8)

Proof. By (2.2) we have

0 [
1
2
F
T

0
C
N

j=i+1
C
j−1

k=1
D i

j−k, k(c
N(y)) dy

[ F
T

0
C
N−i

j=1
ai, jc

N
i (y) c

N
j (y) dy+c

N
i (T).

Owing to (3.1) and (2.5) we may estimate the right-hand side of the above
inequality and obtain

: C
N

j=i+1
C
j−1

k=1
D i

j−k, k(c
N) :

L1(0, T)
[ 2AiT ||c0||2X+2 ||c

0||X.

The estimate (3.8) then follows from (2.2), (1.4), (3.1), (2.5) and the above
estimate. L

We are now in a position to prove Theorem 3.1. For that purpose we
first recall a refined version of the de la Vallée-Poussin theorem for inte-
grable functions [ref. 19, Proposition I.1.1].

Theorem 3.5. Let (W, B, m) be a measured space and consider
w ¥ L1(W, B, m). Then there exists a function V ¥K1,. such that

V(|w|) ¥ L1(W, B, m).
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Remark 3.6. Theorem 3.5 is a classical result when m(W) <. (see,
e.g., ref. 10, p. 38), except for the possibility of choosing VŒ concave. This
last fact has been noticed in ref. 19.

Proof of Theorem 3.1. We apply Theorem 3.5, W being the set
N0{0} and B the set of all subsets of N0{0}. Defining the measure m by

m(I)= C
i ¥ I
c0i , I …N0{0},

the condition c0 ¥X+ ensures that xW x belongs to L1(W, B, m). By
Theorem 3.5 there is thus a function U0 ¥K1,. such that xW U0(x) belongs
to L1(W, B, m), that is,

U0 := C
.

i=1
U0(i) c

0
i <.. (3.9)

In the following we denote by C any positive constant depending only
on A, ||c0||X, U0 and U0. The dependence of C upon additional parameters
will be indicated explicitly.

By (2.5) and (3.8) the sequence (cNi )N \ i is bounded in W1, 1(0, T) for
each i \ 1 and T ¥ (0,+.). We then infer from the Helly theorem [ref. 13,
pp. 372–374] that there are a subsequence of (cNi )N \ i, still denoted by
(cNi )N \ i, and a sequence c=(ci)i \ 1 of functions of locally bounded varia-
tion such that

lim
NQ+.

cNi (t)=ci(t) (3.10)

for each i \ 1 and t \ 0. Clearly ci(t) \ 0 for i \ 1 and t \ 0 and it follows
from (3.10) and (2.5) that c(t) ¥X+ with

||c(t)||X [ ||c0||X, t \ 0. (3.11)

Furthermore, as U0 ¥K1,. we infer from (3.9) and Lemma 3.3 that, for
each T \ 0 and N \ 3, there holds

C
N

i=1
U0(i) c

N
i (t) [ C(T), t ¥ [0, T], (3.12)

0 [ F
T

0
C
N−1

i=1
C
N−i

j=1
C

i+j−1

s=1
s 1U0(i+j)

i+j
−
U0(s)
s
2 D s

i, j(c
N(y)) dy [ C(T). (3.13)
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Owing to (3.10) the lower semicontinuity of the left-hand sides of
(3.12)–(3.13) and the Fatou lemma allow to conclude that, for each T \ 0,

C
.

i=1
U0(i) ci(t) [ C(T), t ¥ [0, T], (3.14)

0 [ F
T

0
C
.

i=1
C
.

j=1
C

i+j−1

s=1
s 1U0(i+j)

i+j
−
U0(s)
s
2 D s

i, j(c(y)) dy [ C(T). (3.15)

Let i \ 1. On the one hand, since U0 ¥K1,. it follows from (3.1) and (3.14)
that

C
.

j=1
ai, jcj ¥ L1(0, T). (3.16)

On the other hand we have

C
.

j=i+1
C
j−1

k=1
D i

j−k, k(c)= C
j+k \ i+1

D i
j, k(c), (3.17)

and we infer from (3.15) and the properties of U0 that

C
.

j=i+1
C
j−1

k=1
D i

j−k, k(c) ¥ L
1(0, T). (3.18)

Consider now s \ 1 and M \ 2. By (2.5), (3.10), (3.11) and the
Lebesgue dominated convergence theorem we have

lim
NQ+.

: C
M

j=1
as, j(c

N
s c

N
j −cscj) :

L1(0, T)
=0.

We next infer from (3.5), (2.5) and (3.1) that, for N \ s+M+1,

: C
N−s

j=M+1
as, jc

N
s c

N
j
:
L1(0, T)

[ 2As ||c0||X : C
N−s

j=M+1
jcNj :

L1(0, T)

[ C(s, T) sup
j \M

j
U0( j)
: C

N−s

j=M+1
U0( j) c

N
j
:
L1(0, T)

: C
N−s

j=M+1
as, jc

N
s c

N
j
:
L1(0, T)

[ C(s, T) sup
j \M

j
U0( j)

.
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Similarly (3.1), (3.11) and (3.14) yield

: C
.

j=M+1
as, jcscj :

L1(0, T)
[ C(s, T) sup

j \M

j
U0( j)

.

Combining the above three estimates we obtain

lim sup
NQ+.

: C
N−s

j=1
as, jc

N
s c

N
j − C

.

j=1
as, jcscj :

L1(0, T)
[ C(s, T) sup

j \M

j
U0( j)

.

The above inequality being valid for each M \ 2 we use again the fact that
U0 ¥K1,. to conclude that

lim
NQ+.

: C
N−s

j=1
as, jc

N
s c

N
j − C

.

j=1
as, jcscj :

L1(0, T)
=0. (3.19)

Finally consider s \ 1 and e ¥ (0, 1). Since U0 ¥K1,. there isM \ s+1 such
that

j \M 2 s 1U0( j)
j

−
U0(s)
s
2 \ 1

e
. (3.20)

For N \ s+1 we have

C
N

j=s+1
C
j−1

k=1
D s

j−k, k(c
N)= C

s+1 [ j+k [N
D s

j, k(c
N).

Recalling (3.17) we see that

C
N

j=s+1
C
j−1

k=1
D s

j−k, k(c
N)− C

.

j=s+1
C
j−1

k=1
D s

j−k, k(c)

= C
s+1 [ j+k [N

D s
j, k(c

N)− C
j+k \ s+1

D s
j, k(c). (3.21)

On the one hand it follows from (3.10), (2.5), (3.11) and the Lebesgue
dominated convergence theorem that

lim
NQ+.

: C
s+1 [ j+k [M

(D s
j, k(c

N)−D s
j, k(c)) :

L1(0, T)
=0. (3.22)
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On the other hand we have by (3.20)

D s
j, k(c

N) [ es 1U0( j+k)
j+k

−
U0(s)
s
2 D s

j, k(c
N)

for ( j, k) such that j+k \M+1, hence by (3.6),

: C
M+1 [ j+k [N

D s
j, k(c

N) :
L1(0, T)

[ Ce. (3.23)

Similarly it follows from (3.20) and (3.15) that

: C
M+1 [ j+k

D s
j, k(c) :

L1(0, T)
[ Ce. (3.24)

Combining (3.21)–(3.24) yields

lim sup
NQ+.

: C
N

j=s+1
C
j−1

k=1
D s

j−k, k(c
N)− C

.

j=s+1
C
j−1

k=1
D s

j−k, k(c) :
L1(0, T)

[ Ce

for each e ¥ (0, 1). Consequently

lim
NQ+.

: C
N

j=s+1
C
j−1

k=1
D s

j−k, k(c
N)− C

.

j=s+1
C
j−1

k=1
D s

j−k, k(c) :
L1(0, T)

=0. (3.25)

Owing to (3.10), (2.5), (3.11), (3.19) and (3.25) it is now straightfor-
ward to check that ci satisfies Definition 2.1(ii) for each i \ 1. By (3.16),
(3.18) and (3.11) the right-hand side of the identity in Definition 2.1(ii) is
integrable over (0, t) for each t > 0, and the continuity of ci follows. We
have thus shown that c=(ci) is a solution to (1.2)–(1.3) on [0,+.). In
order to complete the proof of Theorem 3.1 it remains to check (3.2). Let
t ¥ (0,+.). For N \M \ 3 we have by (2.5)

| ||c(t)||X−||c0||X| [ C
M

i=1
i |cNi (t)−ci(t)|+ C

.

i=N+1
ic0i

+ C
N

i=M+1
icNi (t)+ C

.

i=M+1
ici(t).
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It then follows from (3.12) and (3.14) that

| ||c(t)||X−||c0||X| [ C
M

i=1
i |cNi (t)−ci(t)|+ C

.

i=N+1
ic0i+C(T) sup

i \M

i
U0(i)

.

Since c0 ¥X+ we first deduce from (3.10) that

| ||c(t)||X−||c0||X| [ C(T) sup
i \M

i
U0(i)

.

Recalling that U0 ¥K1,. we conclude that ||c(t)||X=||c0||X and the proof of
Theorem 3.1 is complete. L

3.2. Propagation of Moments and Uniqueness

The question we consider here is whether, given c0 ¥X+ such that
; imc0i <. for some m > 1, the solution c to (1.2)–(1.3) constructed in
Theorem 3.1 enjoys the same properties throughout time evolution, that is,
; imci(t) <. for t ¥ (0,+.). This question has a positive answer for the
discrete coagulation equations with spontaneous breakage (1.1) (4, 5) and our
next result states that the answer is also positive for (1.2).

Proposition 3.7. Assume that the assumptions (1.4)–(1.5) and (3.1)
are fulfilled, and consider c0 ¥X+ such that

C
.

i=1
imc0i <. (3.26)

for some m > 1. Then the solution c to (1.2)–(1.3) on [0,+.) constructed
in Theorem 3.1 satisfies

sup
t ¥ [0, T]

C
.

i=1
imci(t) <.

for each T > 0.

Proof. By (3.10) we know that

lim
NQ+.

cNi (t)=ci(t)
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for each t ¥ [0,+.) and i \ 1, where cN still denotes the solution to
(2.2)–(2.3) given by Lemma 2.2. Taking gi=im in (2.4) we obtain

d
dt

C
N

i=1
imcNi [

1
2

C
N−1

i=1
C
N−i

j=1
((i+j)m−im−jm) ai, jc

N
i c

N
j ,

since the convexity of rW rm entails that

(i+j)m \ C
i+j−1

s=1
N s

i, js
m, i, j \ 1.

Now, by ref. 4, Lemma 2.3 there is a constant om depending only on m
such that

(i+j)((i+j)m−im−jm) [ om(ijm+jim), i, j \ 1.

It follows from (3.1), (2.5) and the above inequality that

d
dt

C
N

i=1
imcNi [

Aom
2

C
N−1

i=1
C
N−i

j=1
(ijm+jim) cNi c

N
j

[ Aom ||c0||X C
N

i=1
imcNi ,

and the Gronwall lemma yields

C
N

i=1
imcNi (t) [ exp(Aom ||c0||X t) C

N

i=1
imc0i , t \ 0.

Owing to (3.26) and (3.10) we may pass to the limit as NQ+. in the
above inequality and obtain

C
.

i=1
imci(t) [ exp(Aom ||c0||X t) C

.

i=1
imc0i , t \ 0.

The proof of Proposition 3.7 is thus complete. L

As a consequence of Proposition 3.7 we may prove the following
uniqueness result.

Proposition 3.8. Assume that the assumptions (1.4)–(1.5) are ful-
filled and there are a ¥ [0, 1] and Ka > 0 such that

ai, j [Ka(ia+ja), i, j \ 1. (3.27)
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Consider next c0 ¥X+ such that

C
.

i=1
i1+ac0i <.. (3.28)

Then there is a unique solution c to (1.2)–(1.3) on [0,+.) satisfying both
(3.2) and

sup
t ¥ [0, T]

C
.

i=1
i1+aci(t) <. (3.29)

for each T ¥ (0,+.).

Proof. As a ¥ [0, 1] it follows from (3.27) that (ai, j) satisfy (3.1)
and the existence of a solution to (1.2)–(1.3) on [0,+.) with the prop-
erties stated in Proposition 3.8 is a consequence of Theorem 3.1 and
Proposition 3.7.

As for uniqueness we follow closely the approach developed in ref. 2,
Theorem 4.2. Given c0 ¥X+ satisfying (3.28) we consider two solutions
c=(ci) and ĉ=(ĉi) to (1.2)–(1.3) on [0,+.) enjoying the property (3.29).
For i \ 1 we put

zi=ci−ĉi and si=sign(zi),

where sign(r)=r/|r| if r ¥ R0{0} and sign(0)=0. Fix n \ 2 and t ¥ (0, T).
We infer from (1.2) that

C
n

i=1
i |zi(t)|= F

t

0
C
4

i=1
Sn

i(y) dy, (3.30)

where

Sn
1=

1
2

C
n−1

i=1
C
n−i

j=1
wi, j((i+j) si+j−isi−jsj) ai, j(cicj−ĉi ĉj),

Sn
2=

1
2

C
n−1

i=1
C
n−i

j=1
(1−wi, j) 1 C

i+j−1

s=1
sssN

s
i, j−isi−jsj 2 ai, j(cicj−ĉi ĉj),

Sn
3=− C

n

i=1
C
.

j=n+1−i
isiai, j(cicj−ĉi ĉj),

Sn
4=

1
2

C
n

i=1
C
.

j=n+1
C
j−1

k=1
isi(D

i
j−k, k(c)−D

i
j−k, k(ĉ)).
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Noticing that

((i+j) si+j−isi−jsj) zi=((i+j) si+jsi−i−jsjsi) |zi |

[ 2j |zi |,

the first term Sn
1 can be estimated as follows:

Sn
1 [ C

n−1

i=1
C
n−i

j=1
wi, jai, j( jcj |zi |+iĉi |zj |),

hence by (3.27) and (1.4)

Sn
1 [ 2Ka1 C

n

i=1
i1+a(ci+ĉi)2 C

n

i=1
i |zi |. (3.31)

Similarly we have by (1.5)

1 C
i+j−1

s=1
sssN

s
i, j−isi−jsj 2 zi=1 C

i+j−1

s=1
ssssiN

s
i, j−i−jsjsi 2 |zi |

[ 2j |zi |.

Consequently, using once more (3.27) and (1.4) we obtain

Sn
2 [ 2Ka 1 C

n

i=1
i1+a(ci+ĉi)2 C

n

i=1
i |zi |. (3.32)

We next infer from (3.27) that

F
t

0

: C
n

i=1
C
.

j=n+1−i
isiai, jcicj : dy [Ka F

t

0
C
n

i=1
C
.

j=n+1−i
(i1+a+ija) cicj dy,

and it follows at once from (3.29) that

lim
nQ+.

F
t

0

: C
n

i=1
C
.

j=n+1−i
isiai, jcicj : dy=0.

As a similar result is available for ĉ we conclude that

lim
nQ+.

Sn
3=0. (3.33)
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Finally it follows from (1.2) that

C
n

i=1
ici(t)=C

n

i=1
ic0i − F

t

0
C
n

i=1
C
.

j=n+1−i
iai, jcicj dy

+
1
2
F
t

0
C
n

i=1
C
.

j=n+1
C
j−1

k=1
iD i

j−k, k(c) dy.

Now c is a density-conserving solution to (1.2) and an argument similar to
the proof of (3.33) ensures that the second term of the right-hand side of
the above identity converges to zero as nQ+.. Letting nQ+. then
yields

lim
nQ+.

F
t

0
C
n

i=1
C
.

j=n+1
C
j−1

k=1
iD i

j−k, k(c) dy=0,

from which we easily deduce that

lim
nQ+.

Sn
4=0. (3.34)

Owing to (3.29) and (3.31)–(3.34) we may pass to the limit as nQ+.
in (3.30) and obtain

C
n

i=1
i |zi(t)| [ 4Ka F

t

0

1 C
n

i=1
i1+a(ci+ĉi)2 C

n

i=1
i |zi | dy.

Applying the Gronwall lemma then completes the proof of Proposition 3.8.
L

4. REMARKS ON LARGE TIME BEHAVIOUR AND GELATION

We end up this paper with the study of the large time behaviour of
solutions to some particular cases of (1.2)–(1.3). We begin with the non-
linear breakage model (1.7). (8) As already mentioned, in this model, a
cluster only produces fragments of smaller sizes after collision. We thus
expect that only 1-clusters remain in the long time. More precisely we have
the following result:

Proposition 4.1. Assume that (ai, j) satisfy (1.4) and (3.1), wi, j — 0
and

N s
i, j=1[s,+.)(i) bs, i; j+1[s,+.)( j) bs, j; i, (4.1)
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where {bi, j; k, 1 [ i [ j−1} denotes the distribution function of the frag-
ments of a j-cluster after a collision with a k-cluster, and satisfies

C
j−1

i=1
ibi, j; k=j, j \ 2, k \ 1. (4.2)

For c0 ¥X+ there is a density-conserving solution c to (1.2)–(1.3) on
[0,+.) and there is c.=(c.i ) ¥X

+ such that

lim
tQ+.

||c(t)−c.||X=0. (4.3)

Moreover, if i \ 2 is such that ai, i ] 0 we have

c.i =0. (4.4)

Remark 4.2. In particular, if ai, i > 0 for each i \ 2 then c.i =0 for
every i \ 2 and (3.2) and (4.3) entail that c.1=||c0||X.

Proof. First, as (ai, j) satisfy (3.1) the existence of a density-conserv-
ing solution follows from Theorem 3.1. Consider next m \ 1, t1 \ 0 and
t2 \ t1. We multiply the ith equation of (1.2) by i and sum the resulting
identities from i=1 to i=m. After integrating over (t1, t2) and some cal-
culations we obtain

C
m

i=1
i(ci(t2)−ci(t1))=

1
2
F
t2

t1
C
m

j=1
C
m

k=m+1−j

1 C
m

i=1
iN i

j, k−j−k2 aj, kcjck dy

+ F
t2

t1
C
m

j=1
C
.

k=m+1

1 C
m

i=1
iN i

j, k−j2 aj, kcjck dy

+
1
2
F
t2

t1
C
.

j=m+1
C
.

k=m+1
C
m

i=1
iD i

j, k(c) dy. (4.5)

On the one hand (4.1)–(4.2) entail that

C
m

i=1
iN i

j, k= C
j

i=1
ibi, j; k+ C

k

i=1
ibi, k; j=j+k

for j ¥ {1,..., m} and k ¥ {m+1−j,..., m}, and the first term of the right-
hand side of (4.5) is equal to zero. On the other hand, using again
(4.1)–(4.2), we obtain

C
m

i=1
iN i

j, k= C
j

i=1
ibi, j; k+ C

m

i=1
ibi, k; j=j+ C

m

i=1
ibi, k; j
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for j ¥ {1,..., m} and k \ m+1, hence a non-negative bound from below for
the second term of the right-hand side of (4.5). Therefore (4.5) yields

C
m

i=1
i(ci(t2)−ci(t1)) \

1
2
F
t2

t1
C
m

j=1
C
.

k=m+1
C
m

i=1
ibi, k; jaj, kcjck dy

+
1
2
F
t2

t1
C
.

j=m+1
C
.

k=m+1
C
m

i=1
ibi, k; jaj, kcjck dy.

C
m

i=1
i(ci(t2)−ci(t1)) \

1
2
F
t2

t1
C
.

j=1
C
.

k=m+1
C
m

i=1
ibi, k; jaj, kcjck dy. (4.6)

The first consequence of (4.6) is that the function

Sm:tW C
m

i=1
ici(t) is a non-decreasing function on [0,+.). (4.7)

Owing to the conservation of density the function Sm is also bounded from
above and we conclude that Sm(t) has a limit as tQ+. for each m \ 1.
Recalling that cm(t)=(Sm(t)−Sm−1(t))/m we readily obtain that there is a
non-negative real number c.m such that

lim
tQ+.

cm(t)=c.m, m \ 1. (4.8)

Furthermore, as c(t) ¥X+ for each t \ 0 the convergence (4.8) ensures that
c. :=(c.m) belongs to X+. Also the density conservation and (4.7) entail
that

C
.

i=m
ici(t) [ C

.

i=m
ic0i , m \ 1, t \ 0.

This last fact and (4.8) yield (4.3).
Finally, another consequence of (4.6) and (4.3) is that

F
.

0
C
.

j=1
C
.

k=m+1
C
m

i=1
ibi, k; jaj, kcjck dy <..

Let i \ 2 such that ai, i > 0. Then the above estimate with m=i−1 and
j=k=i asserts that

C
m

s=1
sbs, i; iai, ic

2
i=iai, ic

2
i ¥ L

1(0,+.).

Recalling (4.8) we obtain that ai, i(c
.

i )
2=0, hence (4.4). L
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Another example of a model involving only collisional breakage
(without coagulation) is the case of coefficients satisfying a detailed balance
condition of the form

N i
j−k, kaj−k, kQj−kQk=Nk

j− i, iaj− i, iQj− iQi (4.9)

for j \ 1 and 1 [ i, k [ j−1, where (Qi) is a sequence of non-negative real
numbers. The condition (4.9) amounts to assume a kind of reversibility in
the collision interactions which could happen here thanks to the possible
transfer of matter during collisions. More precisely, the number of
k-clusters produced by the collision of an i-cluster with a ( j− i)-cluster has
to be balanced by the number of i-clusters resulting from the collision of a
k-cluster with a ( j−k)-cluster. For instance such a condition is fulfilled
(with Qi — 1) by

N s
i, j=

2
i+j−1

, ai, j=(i+j)w, w ¥ [0, 1].

Under the assumption (4.9), and suitable assumptions on (Qi) as well, non-
trivial steady states exist and it is expected that the solutions to (1.2)–(1.3)
converge to a steady state. We refer to the forthcoming paper (18) for some
results in that direction. It is worth mentioning here that the above men-
tioned results do not cover all the possible models (1.2) involving only
collisional breakage (without coagulation).

For the general model (1.2)–(1.3) with both coagulation and collisional
fragmentation the analysis of the large time behaviour of the solutions
seems to be harder. Besides the case considered by Srivastava (24) we are able
to show the convergence to steady states of solutions to (1.2)–(1.3) under
the strong assumption that each collision has to involve a 1-cluster. (17) Such
an assumption is reminiscent of the Becker–Döring model. (3) More preci-
sely, we assume that the collision of an i-cluster with a 1-cluster results in
either an (i+1)-cluster (coagulation) or an (i−1)-cluster and two 1-clusters
(fragmentation). In the coagulation-dominating case (wi, 1 \ 1/2) and in the
fragmentation-dominating case (wi, 1 [ 1/2) stabilization to a steady state is
proved in ref. 17.

Let us finally point out that gelation can occur in the discrete
coagulation equations with collisional breakage. More precisely we have
the following result.

Proposition 4.3. Assume that (ai, j), (wi, j) and (N s
i, j) satisfy

(1.4)–(1.5) and
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lij [ wi, jai, j and ai, j [ Lij, (4.10)

C
i+j−1

s=1
N s

i, j=2 (4.11)

for i, j \ 1, the constants l and L being two positive real numbers.

Consider c0 ¥X+, c0 – 0 and assume that (1.2)–(1.3) has a solution c
on [0,+.) such that tW ||c(t)||X is a non-increasing function on [0,+.).
Then

lim
tQ+.

||c(t)||X=0.

In particular, ||c(t)||X < ||c0||X for t large enough, hence the occurrence
of gelation.

Proof. We follow the lines of the proof of ref. 15, Proposition 5.1.
We infer from (1.2) and (4.11) that, for m \ 1, t1 \ 0 and t2 > t1 we have

C
m

i=1
(ci(t2)−ci(t1))=−

1
2
F
t2

t1
C
m−1

i=1
C
m−i

j=1
ai, jcicj dy

− F
t2

t1
C
m

i=1
C
.

j=m+1−i
ai, jcicj dy

+
1
2
F
t2

t1
C
m−1

i=1
C
m−i

j=1
(1−wi, j) ai, jcicj dy

+ F
t2

t1
C
m

i=1
C
.

j=m+1
C
j−1

k=1
D i

j−k, k(c) dy.

As c(y) belongs to X+ with ||c(y)||X [ ||c0||X for every y ¥ [t1, t2] the
growth conditions (4.10)–(4.11) and (1.4) allow to pass to the limit as
mQ+. in the above equality ; we thus obtain:

C
.

i=1
(ci(t2)−ci(t1)) [ −

1
2
F
t2

t1
C
.

i=1
C
.

j=1
wi, jai, jcicj dy.

Using the lower bound in (4.10) we finally arrive at

C
.

i=1
ci(t2)+

l

2
F
t2

t1
||c(y)||2X dy [ C

.

i=1
ci(t1).
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Now consider t ¥ (0,+.). As tW ||c(t)||X is non-increasing we deduce
from the previous estimate (with t1=0 and t2=t) that

lt
2
||c(t)||2X [ C

.

i=1
c0i [ ||c

0||X.

Thus

||c(t)||X [ 1 2 ||c
0||X
lt
2 −1/2, t ¥ (0,+.),

and the proof of Proposition 4.3 is complete. L
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